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~~stract

In this report we establish the necessary and suff icient conditions

for a set of vectors to be a separating system (SS) or a completely

separating system (CSS) from coding theory framework. Then we show that

in the case of linear codes the necessary and sufficient condition re-

quired for (1,1) CSS is similar to that of (2,1) SS and by deleting the

0 vector from a binary code that forms a (2,1) SS , the set of remaining

code words forms a (1,1) CSS. Even though some linear codes form (2,1)

and (2,2) SS, we prove here that no linear code forms a (2 ,1) or a

(2,2) CSS.
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I. INTRODUCTION[ Sequential circuits are co only classified as being either synchronous

or asynchronous. An asynchronous sequential circuit differs from a syn—

I. chronous sequential circuit in that it contains no clock pulses which reg—

ulate the circuit. The advantage of asynchronous circuit is that its cir—

cult response could be faster than that of synchronous, circuit. This is because

the asynchronous sequential circuit does not have to wait for the arrival

of clock pulses before effecting a transition.

Since the circuit terminal action for synchronous case is examined

only when a clock pulse appears, the transient conditions during the change

• of state variables can be completely ignored and several state variables are

allowed to change simultaneously. However, for asynchronous case circuit

action is examined at all t imes . if more than one secondary variable is

allowed to change then this is called a race. If the final state which the

circuit has reached does not depend on the order in which the variables

I change, then the race is said to be “noncritical race”. If the final state

• reached by the circuit depends on the order in which the internal variables

• - change , then this is referred to as a “critical r ace” .

I Critical races must be avoided in asynchronous sequential circuit. This

problem can be handled by restricting the state assignments in such a manner

~ 
j that there are no state transitions which involve critical races. A class of

state assignments call’~d “unicode single transition time” (Sfl) assignments

were first developed ~.iy Liu (23 and later extended by Tracey [6] for avoiding

critical races . In these assignments all variables which must change in a

given transition are allowed to change simultaneously without critical races.

Friedman et al. (1] studied the same problem and showed how (2,2) and (2 ,1)

* — - -.--—~~~~~~--~~~~~~~~ 
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separating systems correspond to state assignments for asynchronous circuits.

Sometimes it may be desirable to design a sequential circuit in such

a manner that all next state functions to be unate*[8_ 12]. Mago [4] studied

this problem and showed the usefulness of completely sepa~atjng systems (CSS)

((1, l ) , (2 , l) and (2,2) css) for sequential circuit state assignments .

Recently Pradhan and Reddy [5] have given techniques to construct

(2,1) SS from linear codes. In this report some more properties of linear

codes for state assignments are derived. In Section II we cover some back-

ground material. In Section III we establish certain necessary and suff i—

cient conditions for (2,2), (2,1) and (1,1) SS and CSS using coding theory

framework . Then we show by omitting the 0 vector from a linear code which

forms a (2 ,1) SS, the set of remaining code words forms a (1,1) SS. Then we

show that no linear code forms (2,1) or (2,2) CSS.

II. DEFINITIONS AND REVIEW OF EARLIER WORI(

Friedman et ci. [1] generalized the concept of separating systems as

follows:

Definition 2.1: Let H be a finite set and A ,A , . ..  A be subsets of II.1 2  n

A {A1A2... A )  is called an (i j) separating system of H if for any two

subsets R and S of H that have the property R f u i i , Is I — j and RflS —

there exists an A,~(1 c k c n) such that either

R C A ~,~, and SflA~~~~ + 
)

or (2.1)

SCA k and RflAk~~~•.J 
- •

The concept of completely separating systems j s  generali zed by Mago [4]

as follows.

*A function f is said to be unate if f no variables appear both un—
complemented and complemented when f is written in a minimal sum of products
(or product of sums) form.
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Definition 2.2: Let H be a finite set and A1,A2 , . .  A~ be subsets of H.

A — {A1,A2... A~) is called an (i,.j) completely separating systems of H if for

every two subsets R and S of H, that have the property of IR~—i, SI—i

and ROS — •, there exists A.K and AL 
(1 < k , £ c n) such that

RCA.,~~
and SñA.

~~~~

and (2. 2)

scA i and RnAi~~~s.

The relationship between SS and state assignment can be explained

as follows. Let the A {A1,A2,... A )  forms an (i,j) SS of H. Then any

state r c H is assigned a binary n—tuple (y1,y2,... Y0) where each Yj — 1

(or 0) iff r £ A~ .

For an example let H1 — (a ,b ,c ,d) ,  A1 — {a,b) and A2 — {a ,c). The set

{A 1,A2~ forms a (1,1) SS of H1. The corresponding state assignment for the

elements in H is as follows:

~
‘i “2

a i

C 0

d O  01•
One can readily observe the association of A1 with y1 and A2 with y2

in the above example. As another example consider the set H2 
— {a ,b ,c). When

A1 — {b ,c ), A2 • (a,c) and A3 — {a,b) then the set {A1,A2, A3 } forms a (1,1) CSS

of H2. The corresponding state assignment is given below

~
‘l ~

‘2 “3I a 0 1 1

b 1 0 1

c 1 1 0

.—~-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~,. “ .L_4
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It can be easily observed that (1,1) SS corresponds to any arbitrary

state assignment (i.e. each state assigned to a unique n—tuple). It is

shown previously in (1,3] how (2,1) SS and (2,2) SS enable state assignments

f or asynchronous circuits free from critical races. Further, Mago [4] showed

how [1,1] CSS corresponds to a state assignment for a synchronous circuit

which results in unate next state functions.

We use the definition given by Pradhan and Reddy (5] for (2,1) SS and

extend this definition to other types of SS and CSS. These can be derived

from definition s 2.land 2.2 by the state assignment method explained above .

All n—tuples referred to in this report are also called vectors and they are

over the b inary field {O ,1).

Definition 2.3: Let X — (x1x2 . . .  x~) and Y — (y1y2... ~~ be two n—tuples.

The transition path from X to y is the set of all n—tuplea obtained by

arbitrarily specifying the entries in the positions in which X and Y differ.

Exa~ple Let X 1101 and y — 1000 . Since X and Y differ in

second and fourth positions the transition path from X to Y is

{llOl, 1100, 1001, 1000). •

Now (2,1) SS and (2 ,2) SS can be specified as follows.

Definition 2.4: A set of vectors A of n—tuples is a (2,1) SS iff for all

distinct X, y, z c A, z does not exist in the transition path from X to Y

(i.e. Z j T,~ ).

Definition 2.5: A set A of n—tuples is (2,2) SS iff for all

distinct U,V,X,Y £ A, the transition path from U to V and from X to Y are

mutually exclusive (i.e. T flT — •) .uv xy

• — - — - —. 5 .— . .. . .~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Definition 2.6: An n—tuple X — (x1x2 . . .  x )  is said to cover the n—tuple

I. 
— 

~
‘1~”2~~~ 

y~
) whenever y~ — 1 then Xi 

— 1. (X covers Y is written as

Y c X.) Also if X c Y or Y < X than these vectors are called ordered vectors.

If X Y and Y X then those vectof~g are_called unorderd (or an 
unordered pair).

S Now we can redefine (1,1) Css,(2,l) CSS and (2,2) CSS as follows.

Definition 2.7: A set A of n—tuples is a (1,1) CSS if f for all

X,’?cA , X ?Y a n d Y ?X .

Definition 2.8: A set A of n—tuplee is a (2,1) CSS if f for all

1,1,2 ~ A, X ~ 2 and I ~ Z, Z does not exist in the transition path from

1 1. 1 t o ,! (i.e. Z i ~~~ and for all U c T~~, Z and W are unordered vectors.

Definition 2.9: A set of vectors A of n—tuples is a (2,2) CSS iff for cli

distinct U,V ,X,Y c A, the transition paths from U to V and from X to ‘1 are

mutually exclusive (i.e. T (IT $) and all pair R and S are unordered
he xy uv

w h e r e R c T  a n d S e Tuv xy

Notation: We adopt the standard notation for logical operators AND, EXOR (+)

and NEGATION of n—tuples as follows:

X Y ( x
1
.y 11 ..x

2~~~y2,...,
x y )

f X + I — (X
1 

+ y1, X
2 + 

~
‘2 ” X0 +

SI and X — (x1,x2 ... ~c )

Also let 0 (0,0... 0).

- 
A set of n—tuples , C, forming a linear code are a suaspace of the vector

space of all n—tuples. However, for the binary case one can easily show that C

needs only to be closed under addition ( + ) operation. Therefore we state the

• following.

[ 
Definition 2.10: A set of n—tuples A is a linear code if f for all

:1 ‘ 

X ,Y c A , 1+ ’ Y t A .

[ (Note: The operation ‘+ ‘ is modulo 2 addition and for any n—tuple X,
X + X — 0 . )

i. ~~~~. S •
~~

.. ~J ~: ..
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III. LINEAR CODES , SEPARATING SYSTEMS AND COMPLETELY SEPARATING
SYSTEMS

In this section the necessary and sufficient conditions for a set of

vectors to be (2,1) SS, (2 ,2) SS, (1,1) CSS , (2 ,1) CSS and (2 ,2) CSS are

established. Then the relationship between linear -codes and SS (CSS) is

established. The relationship between (2,1) SS and linear codes has al-

ready been given by Pradhan and Reddy in [5) and the following two lemmas are

from their work.

Lemma 3.1: A set of vectors A , forms a (2 ,1) separating system if f for all

distinct X,Y,Z c A , (X + z) . (
~ + z) # 0.

Lemma 3.2: A linear code C is a (2,1) separating system if I for all non-

zero X,Y £ C , X . I # 0.

The following Lemmas 3.3 and 3.4 give the necessary and sufficient con-

ditions for a set of vectors to be a (2,2) separating system.

Lemma 3.3: A set of vectors A is a (2,2) separating system if I f or all distinct

U,V,X,Y £ A, U and V have the same value e in some position, say I, and X and I

have the complement value ~ in position i.

Proof: Suppose for all distinct U,V X ,Y £ A there is ~ome position i such that

— V
1 

— e and X
1 

— y
1 

— 
~~~, then all the elements in the transition path Tuv

have value e in position i and all elements in the transition path T~ , have value

e in position i. Therefore T
UVC~

T
~~ 

— • and hence A forms a (2,2) SS.

Conversely, let A be a (2,2) SS. If there exists U,V ,X ,Y c A such that
in no position of U,V,X and I, x~ y~ — e and u~ — v~ — , then it is easy to
prove T~~AT # $. This contradicts the hypothesis that A i, a (2,2) SS. This

completes the proof.

Lemma 3.4: A set of vectors A is a (2,2) SS iff for all distinct U I V ,X,Y c A

we have (X + U) . (Y + U) . (X + V) ~ 0. 

- S . -,  
_ _ _ _ _
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Proof: Suppose for all distinct u,v,x ,y t A if we have (X + U) (1 + U)

(X + V) ~ 0 then at least in one position, say j, we will have

x + u - l
I I

y
l 

+ U
j  

— 1

x
1 

+ v
1

1

Hence x
1 

— y
1 

— e and u
1 

— v
1 

— where a c (0,11 is satisfied. Therefore

from Lemma 3.4, A is a (2,2) SS.

Conversely if A is a (2 ,2) SS, then from Lei a 3.3, for all distinct

U,V,X,Y in A there exists at least one position, say i, such that

e and u~ v~

Then

x1 + u~~~l,y 1 + u~~~~ 1 and x~ + v~~~~ l.

Hence (1 + U) (I + U) . (X + V) i’ 
~~~

. 

S

The following theorem gives the necessary and sufficint conditions for

a linear code to be a (2,2) SS.

Theorem 3.5: A linear code C is a (2,2) SS if I all non—zero P,Q,R £ C, and

R~~~P + Q, satisfy

P .Q .R~~~O.

Proof: Let C be a linear code and a (2,2) SS. For all distinct U,V ,X,! £ C,

• a linear code, U + V — P, Y + U — Q, and ~ + U — R are all in C. Further

P, Q, R are all .~on—zero since for binary n—tuples, each is its own (unique)

inverse. A 1 s o P + Q - U + V + y + U — V + U a n d v + U~~~X + U — R .

• Ther ef or e P + Q # R. Finally, since C is a (2,2) SS, Lemm 3.4 holds,

which here translates to P . Q . R # 0.

Conversely, let C be a linear code, satisfying the condition that all non—

zero P, Q, R £ C, P + Q ~ R, and P, Q, H ~ 0. Then we need to show that C is

L
— --5-.- --. _ _—__

-_1.,.__ ,_’55-___ - ~~—~
-.--- --- -
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a (2,2) SS. For that purr ’ee, consider any 
distinct codewords

U V ,X ,Y £ C. Then X + U — L, I + U M , X + U N are also code-

words and L + H — x + U + y + u — x + I ~ N.  By r-ur hypothesis ,

L.M.N # 0 and therefore by virtue of Le na 3.4 , C must be ‘a (2,2) SS.

That completes the proof.

At this point one can easily verify the equidistance codes used by

Liu in (2], for state assignment satisfy the conditions stated in Theorem 3.5.

This method requires 2h1
~l secondary state variables for an asynchronous cir-

cuit with 2~ states. The above theorem could be used to derive linear codes 
-

which form (2,2) SS and which may perhaps result in fever state variables.

Let us now consider the case for completely separating systems.

Lemma 3.6 gives necessary and sufficient conditions for a set of vectors to

be a (1,1) CSS.

Lemma 3.6: A set of vectors A, forms a (1,1) CSS ill for all distinct X, I c A

1. (X+Y) ,&O a n d y .  (X+Y)~~’O.

Proof: For all X,Y c A let X(X + I) # 0 and Y (X + Y) ~ 0. Since

X (X + Y) ~ 0 then at some position, say i, x~ 1 and y~ — 0. Hence

x ? Y. Similarly I •(X + Y) ~ 0 lead s to I ? X. Therefore A is a (1,1) CSS.

Conversely, let there be I, I in C such that X (K + Y) 0. Now

whenever x1 — 1, then y~ — 1, i.e. X < Y, which violates the definition of

(1,1) CSS. Similar result can be proved when I . (I + I)—o. That completes

the proof.

Theorem 3.7: Let C be a linear code and C’ be a set of all non—zero code

vectors. C’ is a (1,1) CSS 1ff for all distinct X ,Y £ C’ X • Y ~ 0.

Proof: From Lemma 3.6, C’ is a (1,1) CSS if f for all distinct X , I c C ’,

K (X + Y) ~ 0 and 
y . (I + X) # 0. Since C is linear code for X #

X + I — 2 # 0 and hence the theorem.

- ...



-
~~~~~~ — - .~~~~~~~~~~ . - ‘ T 1 i~i~~ ~~~~~

5 - 5 -
~~~~~~ 

‘
~~~~~~~~~ ‘~~~~~~

5-’
~~~~~~~

’ 5-
~ 5-’-55-”,—s.~~~ -5’5

~~~
5’55-S.5

~~~
,_ ~W-~~~~

~1t.

—9—

From Lemma 3.2 and Theorem 3.7 it can be said that in th. case of

linear codes , the (2 , 1) SS and (1,1) CSS are in a sense equivalent , i.e.

the linear codes which form (2 ,1) Sb also form (1,1) CSS by simp ly

dsl.ting the 0 vector . Hence the codes given by Pradhan and Reddy

in (5] could be used to construct (1,1) CSS. This may not give a minimum

numbsr of secondary variables. It ii known (13] that Berger codes form

(1,1) CSS which requires only n+log2(n+l) secondary state variables for a

flow table with states.

L emma 3.8: A set of vectors A is a (2 ,1) completely separating system i f f

for all distinct X , Y, Z c A , there exists two positions , say i and j  such that

x1 — y ~~~~ e , z 1 e and x
1

— y
1

e , z
1

e where ec{0 , l}.

Proof: Immediate consequence of Definition 2.8.

Lemma 3.9: A set of vectors A is a (2,1) CSS iff for all distinct X,Y , Z £ A

x .  (X + Z) . (Y + Z),& 0 ,and z . (X + Z) . (Y + Z)~~~O.

Proof: Suppose for all distinct X , Y , 2 c A , if X (X + 2) (1 + Z) ~ 0 ,

then at least in one position say i, x~ — 1~ Yj — 1 and • 0. Also, for all

distinct X , I, Z £ A , if 2 . (X + Z) (I + 2) ~ 0, then at least in one

position say 1~ x1 — y1 
— 0 and • 1. Therefore from Lemma 3.8, A is a (2,1) CES.

Conversely, let there be X , 1, 2 in A such that K (X + Z) (I + 2) . 0.

Then whenever — 1. • 1 and y~ — • (don ’t care) or — 0 and • 0. From

Lemma 3.8  we can see this violates the condition (X
1 
• Yj — a and z~ • 

) required

for A to be a (2,1) CSS. Similar result can be prov ed when Z • (X+Z ) - (Y+Z ) — 0.

The following lemma follows directly from Definition 2.9.

‘l

i I
41

_

~
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Lemma 3.10: A set of vectors A is a (2 ,2) CSS iff for all distinct

U, V, K , I c A, there exists some positions, say i and j, where

— V~ — e, x~ — y~ 
— e

and

u
1

v
1

e,x
1

— y
1~~~

e.

Lemma 3.11: A set of vectors A is a (2,2) CSS if f for all distinct

U,V,X,Y £ A , U . (U + X) XV + X) . (U + Y) ~ 0 and

Y - (U + X) - (V + x ) - (U + y ) - Q.

This lemma can be proved similar to Lemma 3 9 .

Theorem 3.12: No linear code forms a (2,1) CSS or a (2 ,2) CSS.

Proof: From Le=a 3.9 ,we can see for a linear code C to be a (2 ,1) CSS , for

all distinct X, I, Z c C, X (X + Z) (Y + Z) ~ 0 and 2 (X + Z)

(I + Z) # 0. But for X , I , Z £ C, where K and I are nonzero and distinct,

a nd Z .X +Y , Z (X + 2)~~ (Y + Z)- (X + Y) (X + X + I).

(Y + K + Y) - (X + Y)  .
~~~~~~X~~~X . y + y . X . y - ~~~~+~~~~-Q .

This violates the condition given in Lemma 3.9 for C to be a (2,1) CSS. There—

fore C does not form a (2 ,1) CSS.

It was shown in [4] that a (2 ,2) CSS is also a (2 ,1) CSS. If a linear

code C forms a (2 ,2) CSS , then it also forms a (2,1) CSS. This contradicts

the frist part of the theorem. Therefore no linear code forms a (2,2) CSS.

I

.1
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IV. CONCLUSION

In this report we have established certain necessary and sufficient

conditions for different types of separating systems and completely se—

arating systems that could be of value in the design of synchronous and

asynchronous circuits . We have shown that linear codes that form (2,1) SS

can also be used as (1,1) CSS simply by omitting the 0 codeword. While

some linear codes can be used to form (2,1) SS and (2 ,2) SS, we have

shown that linear codes cannot be used to form (2 ,1) CSS or (2 ,2) CSS.

Therefore we direct our future efforts in forming these CSS from non-

linear codes , such as coset codes (14] and group theoretical codes

[15,16].
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